Exercise : - Load Loading

Écrit par

The increase in performance generally is related to the achievement of adaptive changes in the organism. Adaptive changes can be achieved by repeated application of Exercise load. The way to achieve adaptive changes in the organism is a systematic repetition of Exercise load. Repeated loads refer to as adaptation stimulus. The principle of adaptive changes is the axis: homeostasis → adaptation stimulus (load) → adaptation.

If adaptation stimuli are applied properly, training can be expected to have accumulative effect. If motor activity is carried out in such a way that it evokes desirable current change of human functional activity, and consequently long-term, structural and psycho-social changes, it can be referred to as load.

Example : If I run every other night in the park without much planning and adherence to the principles of sports training, sooner or later pass the same track may be quicker, but also feeling more relaxed, which is a simplified functional change. Psychosocial changes in this case represent my daily effort and responsibility run out every night out.

The classification exercise as adaptation stimuli

From the point of view of manipulation with exercise load, it is necessary to identify the rate of specificity of exercise with each exercise, its intensity and volume.

Rate of specificity of exercise

Indicates how to what extent exercise is similar to the final design of sports activities. Specifity relates to the sequence of implementing certain muscle groups, the velocity of movements, the effort exerted, the duration of muscle tension, movement frequency, its direction and movement.

We distinguish between the following exercises:

Competition exercises are fully consistent with the design competition (e.g., an attack hit in volleyball). Special exercises assume higher, up to a high degree of compliance with the content and structure of sport specialization. They represent different parts and sub-variants of the final design and is used to improve athletic performance factors (physical, tactics), such variations attack hit in volleyball (e.g., attack after turning 360 degrees, after run back from the network after a landing). Generally nonspecific exercises are exercises which are not related to the given sports specialization. They aim at general development of athletes. The meaning of the exercises is versatile and indirect in respect to specialized perormance: (e.g. presupposition for development of reactive force for volleyball in gym, e.g. back squat).


Intensity exercise is characterized by a degree of effort. (There is a difference do 100 push-ups in 1 hour or 20 minutes). Exercise intensity is on te outside manifested as movement velocity, movement frequency, size of resistence being overcome; and it is related to the the way of performance energy coverage.

We distinguish the ways energy coverage:

Maximum intensity (phosphagen system) (ATP – CP).
Submaximal intensity (fast glycolysis) (LA).
Moderate intensity (slow glycolysis) (LA – O2).
Low intensity (slow glycolysis, fat oxidation) (O2).

Hear rate indirectly reflects load intensity (heart rate increases with increasing load):

HR< 150 beat/min (O2)
HR 150 – 180 beat/min (LA – O2)
HR > 180 beat/min (LA)→(ATP – CP)


The volume of exercise expresses the quantity of load. Volume can be epressed in time, i.e. duration of exercise or the number of repetitions of an exercise respectively. In training practice, the volume of load is expressed with general and specific training indicators.

General training indicators are used in all sports disciplines in a similar way. They are for example the number of training hours, number of training units or number of training days.

Specific training indicators are based on the contents of a specific sports discipline. They are for example the number of kilometers covered by running within II intensity zone, number of technically correctly carried out javelin throws, number of sets played in basic setup in volleyball or the number of kilometers covered by cycling uphill etc.

Size of load

The size of load is understood as a multi-dimensional magnitude which is created by load characteristics:

Exercise intensity
Exercise volume
Rest interval
Way of rest

Crucial features for the volume of load are duration and intensity of exercise in the relationship of indirect proportion. (The higher the intensity, the smaller exercise volume.) Example: running the maximum intensity that will be achieved in terms of maximum speed we can keep the length of several tens of seconds. On the contrary, brisk walking, we are able to handle several hours walking trip.

Increase the size of the load can be in several ways:

Increase of volume
Increase of intensity
Increase volume and intensity together


Loading is a process of applying load which has been devined in advance repeatedly in time. The aim of loading is reaching cumulative training effect. Cumulative training effect arises form the phenomenon of supercompensation. Supercompensation is understood as increasing energy resources of the organism as a consequence of previous exercise load (defined by intensity and size).

The emergence of supercompensation

The emergence of supercompensation

Example: if an athlete runner goes throut training II zone intensity, he/she runs out of energy resources during training because of applied load. This phenomenon is manifested on the outside as fatique. Training is followed by rest during which recovery and repletion of energy resources before further training takes place. Energy resources repletion, however, does not stop at the previous level but there is an increase in energy resources. Subsequent load (further training) should ideally start right at the moment of supercompensation. Telling the moment of supercompensation is very difficult and it is influenced by a number of factors. At present, the optimum time for further load can be told by using a method of the variability of heart rate. If further load starts at the moment of supercompensation, cumulative training effect can be expected to appear. If further load starts too early when the athlete's organism has not been fully recovered yet, exhaustion is likely to appear. In a long-term perspective, this can lead to negative consequences of sports training, ....

Musique Playlists

b mp3

Gymnastique aquatique

b aquagym2

Bébés nageurs

b bebenageur

Exercices de fitness

b fitness

    DEVELOPMENT OF BASIC AND SPECIAL ENDURANCE IN AGE-GROUP SWIMMERS DEVELOPMENT OF BASIC AND SPECIAL ENDURANCE IN AGE-GROUP SWIMMERS A RUSSIAN PERSPECTIVE   Multi-year Training (MYT) is necessary to achieve top international level performances in competitive swimming. The ultimate goal of MYT is the optimal development of motor abilities, functional…
  • Abdominaux, musculation & natation
    Abdominaux, musculation &amp; natation Renforcement de la ceinture abdominale ‘’…Il est primordiale pour tout sportif de renforcer sa ceinture abdominale… ‘’ Pour que le corps du nageur se déplace efficacement dans l'eau, il doit coordonner les mouvements de ses bras et de ses jambes.…
  • Muscler le dos : Renforcement musculaire du nageur
    Muscler le dos : Renforcement musculaire du nageur Renforcement musculaire du dos Le grand dorsal et le groupe musculaire des érecteurs du rachis sont les deux principales cibles des exercices pour le dos. Muscle propulseur de l'humérus, le grand dorsal est le principal moteur des membres supérieurs, générateur…
    Swimming : -TOP DRILLS FOR BREASTSTROKE BODY POSITION DRILLS Because drag is an inherent part of the breaststroke, achieving excellent body position is essential in maximizing the forward motion of the stroke. Like freestyle and backstroke, the core is the center of power, but in breaststroke,…
    Swimming : -TOP DRILLS FOR BACKSTROKE BODY POSITION DRILLS Learning to float well on the back is the first step in being comfortable with the backstroke. Good spinal alignment and core tension not only improve comfort on the back, but can also contribute to an effective…
    Swimming : -TOP DRILLS FOR FREESTYLE BODY POSITION DRILLS An efficient freestyle is built on good body position. The way we float in the water is affected by our core tension. For a better freestyle, we must learn to shift weight forward, and achieve a downhill…
    Swimming : -TOP DRILLS FOR BUTTERFLY BODY POSITION DRILLS The best butterfliers combine grace and power in what seems like effortless forward motion. The primary point of technique that these butterfliers share is good body position. While the line of the stroke is characterized by a…
  • Training and testing of competitive swimmers
    Training and testing of competitive swimmers Two of the most common features of training pro­grams of swimmers competitive are the periodiza­tion of training volume and intensity and  the transition from training to racing. A periodized train­ing and tapering program is based on the principle of overload—recovery—peaking.…
  • Periodization
    Periodization Periodization involves dividing the training plan into smaller parts using the terms mesocycle, macrocycle, and microcycle. These terms are used to establish a hierarchy of training within the overall program. This approach is well established in practice in a wide…
  • Volume before intensity | Periodization |
    Volume before intensity | Periodization | One of the fundamental principles that underpins the periodization of training is that volume of train­ing is increased before the intensity of training. This principle applies to meso-, macro- , and microcycles alike. Most coaches are familiar with the concept…