The effect of exercise mode during active recovery

run siences vo2max 5Few studies applied a different mode of exercise during the sprint compared to that applied during active recovery. For example, Siebers and McMurray (1981) tested a 200 yard swim after a 15-min interval following a 2-min standard tethered swimming exercise at intensity 90% of VO2max. The study included two experimental conditions with active recovery walking or swimming.

During the 15-min interval, swimmers either walked on the pool-deck (velocity 2.5 to 3 mph) or swum at self-selected intensity (moderate pace) for 10 minutes and then rested passively for the remaining 5 min. A limitation of this study was that the intensity of exercise was not specified. No difference was observed in the 200-yard swim although swimmers were 1% faster after swimming active recovery (Siebers and McMurray 1981).

Swimming or rowing active recovery was applied during the 14-min interval between two 200 yard sprints (Felix et al., 1997). The active recovery intensity corresponded to the 65% of the 200 yard velocity and to the 60% of the maximum heart rate for rowing and performed for 10 minutes within the 14-min interval period. Swimming times of the second 200 yard sprint were similar after swimming or rowing active recovery and both were faster compared to passive recovery condition (Felix et al., 1997). Active recovery at the same relative intensity with arms or legs (30% of the VO2max) was applied in the study of Thiriet et al., (1993). Both modes of active recovery improved performance compared to passive recovery (Thiriet et al., 1993).

It seems that the mode of active recovery is not critical for the performance outcome on a subsequent bout at least when a long interval is provided and the tested exercise bout is a long duration sprint (i.e. ~120 s). A summary of studies which examined the effects of the intensity of active recovery or different modes of active recovery on performance are shown on Table 3.